
USING MESH SHADERS
FOR CONTINUOUS
LEVEL-OF-DETAIL
TERRAIN RENDERING

Matthias Englert / Tinman 3D / GMT+1
© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

PART 1:
TERRAIN RENDERING
Å Heightmaps (regular grids)

Å Textures (image pyramids)

Å Terrain mesh

Å Spatial queries

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

PART 1 ïTERRAIN RENDERING ï#1

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

ÅñHugeò regular grids of terrain data samples
ςNot talking about ñpoint soupsò here

ς Cannot just load into CPU memory

Å ASTER GDEM has over 2.8E+11 samples

ÅñHugeò pyramids of terrain image tiles
ςWill probably never fit into GPU tiled texture

Å BingMaps zoom level 22 is 1,073,741,824² px²

ÅWant to render those in real-time

ÅBased on some visibility criterion, need to choose:
ςWhich terrain data samples to use

ςWhich terrain image tiles to use

ÅUse streaming to load the chosen data

ÅBuild a triangle mesh from the chosen samples

ÅMap the chosen images as textures onto the mesh

ÅRender using your favourite API

3

PART 1 ïTERRAIN RENDERING ï#2

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

ÅBuilding a triangle mesh is not trivial

ςNeed to avoid gaps

ςNeed to avoid T-junctions

ςShould be done by splitting triangles where necessary

ςOften done by adding extra ñskirtingò geometry

ςNeed to be fast enough for real-time

ÅMapping images is not trivial

ςGeo-referenced bounds usually do not line up with the
cells of the regular grid

ςSo we need to re-project them

ÅHaving a texture-mapped triangle mesh is nice, but:

ςAlso need to do spatial queries efficiently (e.g. picking)

ςUsually solved by augmenting the triangle mesh with
some bounding-volume hierarchy

4

PART 2:
RTIN + CLOD
Å Classical RTIN on modern GPU

Å No ray-casting techniques

Å No implicit techniques

Å No mesh chunking

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

PART 2 ïRTIN + CLOD ï#1

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D . 6

PART 2 ïRTIN + CLOD ï#2

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

ÅUse of right-triangulated networks for continuous level-of-
detail has been around for years:
ςñSOAR: Visualization of Large Terrains Made Easyò

https://computing.llnl.gov/projects/soar-visualization-large-terrains-made-easy
Peter Lindstrom and Valerio Pascucci, IEEE Transactions on Visualization and Computer Graphics,
8(3):239-254, July-September 2002.

ςñROAMing terrain: Real-time Optimally Adapting Meshesò
https://ieeexplore.ieee.org/document/663860
M. Duchaineau, M. Wolinsky, D. E. Sigeti, M. C. Miller, C. Aldrich and M. B. Mineev-Weinstein,
"ROAMing terrain: Real-time Optimally Adapting Meshes," Proceedings. Visualization '97 (Cat. No.
97CB36155), Phoenix, AZ, USA, 1997, pp. 81-88, doi: 10.1109/VISUAL.1997.663860.

ÅAs RTIN+CLOD not easily fits GPUs, there also is:
ςñQuad-Tree Atlas Ray Casting: A GPU Based Framework for
Terrain Visualization and Its Applicationsò
https://link.springer.com/chapter/10.1007/978-3-642-29050-3_7
Luo J., Ni G., Cui P., Jiang J., Duan Y., Hu G. (2012) Quad-Tree Atlas Ray Casting: A GPU
Based Framework for Terrain Visualization and Its Applications. In: Pan Z., Cheok A.D.,
Müller W., Chang M., Zhang M. (eds) Transactions on Edutainment VII. Lecture Notes in
Computer Science, vol 7145. Springer, Berlin, Heidelberg

ςñAdaptive GPU Tessellation with Compute Shadersò
https://github.com/jdupuy/opengl-framework/tree/master/demo-isubd-terrain
Jonathan Dupuy Jad Khoury and Christophe Riccio 2018.

ςñPlanet-sized batched dynamic adaptive meshes (P-BDAM)ò
https://ieeexplore.ieee.org/abstract/document/1250366
P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton, F. Ponchio and R. Scopigno, "Planet-sized
batched dynamic adaptive meshes (P-BDAM)," IEEE Visualization, 2003. VIS 2003.,
Seattle, WA, USA, 2003, pp. 147-154, doi: 10.1109/VISUAL.2003.1250366.

7

https://computing.llnl.gov/projects/soar-visualization-large-terrains-made-easy
https://ieeexplore.ieee.org/document/663860
https://link.springer.com/chapter/10.1007/978-3-642-29050-3_7
https://github.com/jdupuy/opengl-framework/tree/master/demo-isubd-terrain
https://ieeexplore.ieee.org/abstract/document/1250366

PART 2 ïRTIN + CLOD ï#3

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

ÅUsing 100% classic RTIN + CLOD on modern GPUsé

ςNo ray-casting on the GPU

ςNo implicit subdivision on the GPU

ςNo terrain chunking

Åéis great, because we cané

ςget a quad-tree for free (when encoding the RTIN properly)

ςdo spatial queries on the CPU easily

ςexploit the RTIN structure on the GPUé

ςéas well as on the CPU

ς load terrain data samples at optimal granularity

Åéis hard, because we musté

ςencode the RTIN properly and efficiently

Å no pointers or dynamic memory allocation

ς resolve T-junctions via forced triangle splits

ςneed to triangulate the RTIN

ς compute per-vertex LOD data (e.g. normal vectors)

8

PART 3:
TERRAIN DATA
Å Uniform data representation

Å Hierarchical raster data

Å Hierarchical image data

Å Level-of-detail partitioning

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

PART 3 ïTERRAIN DATA ï#1

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D . 10

ÅNon-uniform terrain data sources

ς Imagery / elevation, geo-referenced

ςRAW, PNG, GeoTIFF, JPEG2000

ςDatum (WGS84/EGM96)

ςProjection (Mercator)

ςParameters (origin, scale)

ÅASTER GDEM
https://asterweb.jpl.nasa.gov/gdem.asp

ςMore than 22,000 tiles

ςEach tile has 3,601 by 3,601 pixels

ÅLots of data, myriad of combinations

ςNeed uniform basis for real-time!

