
USING MESH SHADERS
FOR CONTINUOUS
LEVEL-OF-DETAIL
TERRAIN RENDERING

Matthias Englert / Tinman 3D / GMT+1
© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

PART 1:
TERRAIN RENDERING
• Heightmaps (regular grids)

• Textures (image pyramids)

• Terrain mesh

• Spatial queries

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

PART 1 – TERRAIN RENDERING – #1

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

• “Huge” regular grids of terrain data samples
– Not talking about “point soups” here

– Cannot just load into CPU memory

• ASTER GDEM has over 2.8E+11 samples

• “Huge” pyramids of terrain image tiles
– Will probably never fit into GPU tiled texture

• BingMaps zoom level 22 is 1,073,741,824² px²

• Want to render those in real-time

• Based on some visibility criterion, need to choose:
– Which terrain data samples to use

– Which terrain image tiles to use

• Use streaming to load the chosen data

• Build a triangle mesh from the chosen samples

• Map the chosen images as textures onto the mesh

• Render using your favourite API

3

PART 1 – TERRAIN RENDERING – #2

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

• Building a triangle mesh is not trivial

– Need to avoid gaps

– Need to avoid T-junctions

– Should be done by splitting triangles where necessary

– Often done by adding extra “skirting” geometry

– Need to be fast enough for real-time

• Mapping images is not trivial

– Geo-referenced bounds usually do not line up with the
cells of the regular grid

– So we need to re-project them

• Having a texture-mapped triangle mesh is nice, but:

– Also need to do spatial queries efficiently (e.g. picking)

– Usually solved by augmenting the triangle mesh with
some bounding-volume hierarchy

4

PART 2:
RTIN + CLOD
• Classical RTIN on modern GPU

• No ray-casting techniques

• No implicit techniques

• No mesh chunking

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

PART 2 – RTIN + CLOD – #1

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D . 6

PART 2 – RTIN + CLOD – #2

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

• Use of right-triangulated networks for continuous level-of-
detail has been around for years:
– “SOAR: Visualization of Large Terrains Made Easy”

https://computing.llnl.gov/projects/soar-visualization-large-terrains-made-easy
Peter Lindstrom and Valerio Pascucci, IEEE Transactions on Visualization and Computer Graphics,
8(3):239-254, July-September 2002.

– “ROAMing terrain: Real-time Optimally Adapting Meshes”
https://ieeexplore.ieee.org/document/663860
M. Duchaineau, M. Wolinsky, D. E. Sigeti, M. C. Miller, C. Aldrich and M. B. Mineev-Weinstein,
"ROAMing terrain: Real-time Optimally Adapting Meshes," Proceedings. Visualization '97 (Cat. No.
97CB36155), Phoenix, AZ, USA, 1997, pp. 81-88, doi: 10.1109/VISUAL.1997.663860.

• As RTIN+CLOD not easily fits GPUs, there also is:
– “Quad-Tree Atlas Ray Casting: A GPU Based Framework for

Terrain Visualization and Its Applications”
https://link.springer.com/chapter/10.1007/978-3-642-29050-3_7
Luo J., Ni G., Cui P., Jiang J., Duan Y., Hu G. (2012) Quad-Tree Atlas Ray Casting: A GPU
Based Framework for Terrain Visualization and Its Applications. In: Pan Z., Cheok A.D.,
Müller W., Chang M., Zhang M. (eds) Transactions on Edutainment VII. Lecture Notes in
Computer Science, vol 7145. Springer, Berlin, Heidelberg

– “Adaptive GPU Tessellation with Compute Shaders”
https://github.com/jdupuy/opengl-framework/tree/master/demo-isubd-terrain
Jonathan Dupuy Jad Khoury and Christophe Riccio 2018.

– “Planet-sized batched dynamic adaptive meshes (P-BDAM)”
https://ieeexplore.ieee.org/abstract/document/1250366
P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton, F. Ponchio and R. Scopigno, "Planet-sized
batched dynamic adaptive meshes (P-BDAM)," IEEE Visualization, 2003. VIS 2003.,
Seattle, WA, USA, 2003, pp. 147-154, doi: 10.1109/VISUAL.2003.1250366.

7

https://computing.llnl.gov/projects/soar-visualization-large-terrains-made-easy
https://ieeexplore.ieee.org/document/663860
https://link.springer.com/chapter/10.1007/978-3-642-29050-3_7
https://github.com/jdupuy/opengl-framework/tree/master/demo-isubd-terrain
https://ieeexplore.ieee.org/abstract/document/1250366

PART 2 – RTIN + CLOD – #3

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

• Using 100% classic RTIN + CLOD on modern GPUs…

– No ray-casting on the GPU

– No implicit subdivision on the GPU

– No terrain chunking

• …is great, because we can…

– get a quad-tree for free (when encoding the RTIN properly)

– do spatial queries on the CPU easily

– exploit the RTIN structure on the GPU…

– …as well as on the CPU

– load terrain data samples at optimal granularity

• …is hard, because we must…

– encode the RTIN properly and efficiently

• no pointers or dynamic memory allocation

– resolve T-junctions via forced triangle splits

– need to triangulate the RTIN

– compute per-vertex LOD data (e.g. normal vectors)

8

PART 3:
TERRAIN DATA
• Uniform data representation

• Hierarchical raster data

• Hierarchical image data

• Level-of-detail partitioning

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

PART 3 – TERRAIN DATA – #1

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D . 10

• Non-uniform terrain data sources

– Imagery / elevation, geo-referenced

– RAW, PNG, GeoTIFF, JPEG2000

– Datum (WGS84/EGM96)

– Projection (Mercator)

– Parameters (origin, scale)

• ASTER GDEM
https://asterweb.jpl.nasa.gov/gdem.asp

– More than 22,000 tiles

– Each tile has 3,601 by 3,601 pixels

• Lots of data, myriad of combinations

– Need uniform basis for real-time!

https://asterweb.jpl.nasa.gov/gdem.asp

PART 3 – TERRAIN DATA – #2

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D . 11

• Uniform 2D raster for terrain data samples

– 2N+1 by 2N+1 (pixel-is-point)

– N=30 yields 9mm ground resolution for Earth

– Easy to interpolate / merge at runtime

• Uniform 2D texture for terrain imagery

– 2N by 2N (pixel-is-area)

• GPU (tiled) textures only for N≤14

– Split into tile pyramid

• For N=30 and a tile size of 512, we get 22 levels

• Pad for rectangular maps

• Use map projection

– Oblique Stereographic

– Cassini

– Mercator

– Geographic Cubemap

PART 3 – TERRAIN DATA – #3

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D . 12

• Example LOD partitioning

– Grid: 16 x 16

– Block: 4 x 4

• Data management

– LOD-IDs per block

– Per-block storage

– Lossless compression

– Random access

• Actual LOD partitioning

– Grid: 230+1 x 230+1

– Block: 256 x 256

Block #0 on level #0

Block #1 on level #1

Block #2 on level #1

Block #3 on level #1

Block #4 on level #2

…

Block #15 on Level #3

PART 4:
X-DAG
• eXtended Directed Acyclic Graph

• Semantics

• Vertex pooling

• Cache locality

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

PART 4 – X-DAG – #1

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

• Using an explicit Directed Acyclic Graph for RTIN encoding
– Per-vertex child references (4x)

• “Acyclic” with respect to child references

– Per-vertex parent references (2x)

– Per-vertex grand-parent reference (1x)

– Per-vertex ancestor reference (1x)

• Fast traversal of the DAG is critical for many algorithms
– T-junction removal

– Triangulation

– CLOD refinement

• Adding eXtra geometric semantic to the DAG references:
– Downwards: LL, LR, RL RR, upwards: L, R, G, A

– L := left, R := right

– Based on triangle split (apex up): left half and right half.

14

PART 4 – X-DAG – #2

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

• Applying the geometric semantic for a vertex V yields…

– Parent / child relationships
V.LL.L = V V.LR.R = R V.RL.L = V V.RR.R = V

– Centre of child quadtree node
V.LL.LL V.LL.LR V.RL.LL V.RL.LR

– Nearest descendant in line to L-parent
V.LL.LL.(LL.LR.(RL.LR)*)?

– and much more...

• Can exploit this by writing CPU/GPU programs that take hard-
coded paths through memory, without traversal arithmetic

– Use nearest descendants to compute normal / tangent vectors

– X-DAG traversal for refinement, hitting each vertex exactly one

– Move along space filling curve through X-DAG for triangulation

– Quad-tree traversal for spatial queries

– Move between adjacent vertices for path-finding

15

PART 4 – X-DAG – #3

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

• Vertex pooling

– Fixed-size vertex buffer, 0 ≤ index ≤ N

• Divided into equally-sized buckets

– Per-vertex lock count C

• +1 for each child vertex

• +1 if visible to CPU render-thread / GPU

– Free store contains unlocked vertices

• Linked list of free vertex indices

• Binary heap of free vertex indices

16

#

0

1

…

N

C L R G A LL LR RL RR

X-DAG

Shadow

Vertex data

V
e
rt

e
x
 i
n
d
e
x

• X-DAG shadow copy

– Contains all visible vertices

– Only LL, LR, RL, RR, G, A
references are shadowed

• CPU (terrain work in render thread)

• GPU (triangulation / traversal)

• Take out of free store:

– Compute LOD-ID of block that
contains the new vertex

– Hash LOD-ID to a bucket index

– Search heap to find free index
nearest to bucket. Take it.

– If heap is empty, take least-recently
used index from linked list.

• Put vertex into free store:

– Append to linked list
(most-recently used)

– Maintain maximum list size (e.g. 1024)

• Take least-recently used index from list

B
u
c
k
e
t

CPU/GPU

PART 4 – X-DAG – #4

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

• Cache Locality
– Spatial buckets have N vertices each

• N=64 seems to be a good choice

• Example for N=5 and 30 vertices:
0 10 20 29
|.........|.........|........|
[___][___][___][___][___][___]
| | | | | |
2 7 12 17 22 27 <- target

– Bucket centre vertex is used as ideal
target when looking for nearest free slot

• Colours correlate with LOD-IDs
• Rainbow-look means “good”

• Noisy-look means “bad”

• Dark just means “unused” and is OK

• Top row shows naïve implementation

– LRU only, no spatial buckets

– “Optimal” initial performance, but
dramatically drops later.

• Bottom row shows the described impl.

– “Near-optimal” initial performance, no
significant drop later.

17

Initial (spatial buckets) Later (spatial buckets)

Initial (naïve LRU) Later (naïve LRU)

PART 5:
GPU SETUP
• Buffers

• Shaders

• Triangulation

• From DX9 to DX12

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

PART 5 – GPU SETUP – DX9

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

• Dynamic vertex buffer in shared GPU memory
– Update with NO_OVERWRITE

• Volatile index buffer in shared GPU memory
– Update with DISCARD

• Texture atlas with N separate 2D textures

• 1 draw call per terrain batch

• CPU triangulation + GPU upload
– Triangle list: 12 bytes per triangle

– Triangle strip: ~6.5 bytes per triangle

– Bottleneck for detailed terrains
• Bandwidth usage > 200 MB/s

• CPU render thread 50% busy

• CPU visibility culling
– View frustum

– Horizon

• No displacement mapping
– Not counting D3DRS_ENABLEADAPTIVETESSELLATION here…

19

PART 5 – GPU SETUP – DX10

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D . 20

• Texture atlas with 2D texture arrays

– No longer need to swap textures per terrain batch

• Displacement mapping with Geometry Shader

– Simple 1-to-4 triangle subdivision

– Up to two subdivision levels

– Bottleneck for detailed terrain meshes

• < 20 FPS, even on NVIDIA GeForce RTX 2080 Ti

PART 5 – GPU SETUP – DX11

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

• CPU pre-triangulation + GPU upload

– Terminal triangle list: ~1 byte per triangle

– Bandwidth & CPU usage at ~10% of DX9 levels

• GPU triangulation

– Compute Shader expands terminal triangles to a list
of leaf triangles and generates indirect draw calls.

– Dynamic structured buffer in shared GPU memory,
holding the X-DAG shadow

• Update with NO_OVERWRITE

• 1 compute dispatch call per frame

• 1 indirect draw call per terrain batch

• Displacement mapping with Hull and Domain
Shaders

21

No vertex here, so we

have a terminal triangle

PART 5 – GPU SETUP – DX12

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D . 22

• CPU pre-triangulation + GPU upload

– Sector triangle list: < 0.1 byte per triangle

– Bandwidth & CPU usage at irrelevant levels

• GPU triangulation

– Amplification Shader expands sector list to terminal
triangle list

• Shader output limit is a problem

• CPU pre-triangulation must traverse deeper to reduce
the number of terminal triangles per sector

– Mesh Shader expands terminal triangles to leaf
triangles

• Shader output limit is fine for vertex sizes of ~256 bytes
or less, as there is an inherent upper limit to the number
of leaf triangles in a terminal triangle of ~128

• 1 mesh dispatch call per frame

• Dynamic GPU buffers in L1 GPU memory
– Use D3D12_HEAP_TYPE_UPLOAD to accumulate incremental

updates

• Vertex data

• X-DAG shadow

– Use CopyBufferRegionUpdate to transfer the updates .

• Displacement mapping with Mesh Shader
– Using modified DX10 subdivision code

• Can exploit inherent adjacency of terminal triangles

• Shader output limit is a problem: the number of subdivided leaf
triangles in a terminal triangle must not exceed 256

• Amplification Shader must traverse deeper to reduce the number
of leaf triangles

• Need to escalate up to CPU pre-triangulation, if Amplification
Shader would run into its own output limit

• Difficult to implement

• But parallel processing is worth it ☺

PART 6:
IMPLEMENTATION DETAILS

• “Terminal Triangle List” primitive

• “Sector List” primitive

• Culling with inline ray-tracing

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

PART 6: IMPLEMENTATION DETAILS #1

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

GPU primitive: “Terminal Triangle List”

• One 32-bit word per terminal triangle

• CPU performs regular triangulation but
stops at terminal triangles

• GPU decodes terminal triangle, traverse
the X-DAG shadow and generates
triangles accordingly

24

bits [0.. 1] : child index of C in V
(LL=0, LR=1, RL=2, RR=3)

bits [1.. 2] : child index of V in P
bits [3.. 3] : triangulate (V,P,C)?
bits [4.. 4] : triangulate (V,C,G/A)?
bits [5.. 5] : flip triangle winding?
bits [6..31] : index of vertex P

V
/|\

/ | \
/ | \
/ | \

/ | \
/ | \

/______|______\
P C G/A

V.?L == C V.?R == C

V V
/|\ /|\

/ | \ / | \
LL / | \ LR RL / | \ RR

/ | \ / | \
RL /|\ | /|\ LR RL /|\ | /|\ LR

/ | \ | / | \ / | \ | / | \
/_\|__\|/__|/_\ /_\|__\|/__|/_\
P LR C RL ? ? LR C RL P

V.LL == C V.RR == C V.LR == C V .RL == C

V V V V
/|\ /|\ /|\ /|\

/ | \ / | \ / | \ / | \
LL / | \ LR RL / | \ RR RL / | \ RR LL / | \ LR

/ | \ / | \ / | \ / | \
RL /|\ | /|\ LR RL /|\ | /|\ LR RL /|\ | /|\ LR RL /|\ | /|\ LR

/ | \ | / | \ / | \ | / | \ / | \ | / | \ / | \ | / | \
/_\|__\|/__|/_\ /_\|__\|/__|/_\ /_\|__\|/__|/_\ /_\|__\|/__|/_\
P LR C RL G G LR C RL P A LR C RL P P LR C RL A

PART 6: IMPLEMENTATION DETAILS #2

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

GPU primitive: “Sector List”

• One 32-bit word per sector code

• CPU performs regular triangulation but
stops at sectors that the application
wants to render separately

• GPU decodes sector code, traverse the
X-DAG shadow and generates terminal
triangles accordingly

25

bits [0.. 2] : index of leaf quadrant Q
in the range [0..3]
or 4 for whole sector

bits [3.. 3] : flip triangle winding?
bits [4..31] : index of vertex V

V.L = L V.LL.LL = Q0
V.R = R V.LL.LR = Q1
V.G = G V.RL.LL = Q2
V.A = A V.RL.LR = Q3

A--------RL-------R
Q3	Q2
LR-------V-------RR	
Q0	Q1
L--------LL-------G

PART 6: IMPLEMENTATION DETAILS #3

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

Culling with inline raytracing

• Potential shadow-casters are found by
frustum culling in light-space

– A shows the shadow-receivers

– B shows potential shadow-casters

– C is the bounding-volume-hierarchy

• Reduce B by casting inline rays:

– Add BVH to acceleration structure, two
cuboids per mesh sector, representing
minimum resp. maximum elevation

• Use instance masking to distinguish

• Update via transformation matrix

– In Amplification/Mesh Shader, shoot light-
direction rays onto maximum-BVH:

• 1 Skip geometry when rays miss

• 2 Process geometry otherwise

• Also works for horizon culling

– Shoot reverse eye-vectors

– Use minimum-BVH

26

PART 7:
DEMONSTRATION
• Try it yourself!

• New GPU primitives:
less bandwidth usage
less CPU work

• Inline ray-tracing:
advanced visibility culling
w/o “heavy” CPU work

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

PART 7 – DEMONSTRATION

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D . 28

Try it yourself!

1. Browse “Algorithms.cs”

2. Download the SDK
https://www.tinman3d.com
- no registration required -

3. Run the “Demo Application”
- no license required -

4. Inspect the HLSL shaders
- full source code included -

5. Questions? Please ask:
me@tinman3d.com

Artificial Terrain Earth

https://www.tinman3d.com/
mailto:me@tinman3d.com

THE END

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D . 29

Thank you for listening!

Questions?

Please ask:

Matthias Englert
me@tinman3d.com

mailto:me@tinman3d.com

QUESTIONS & ANSWERS – #1

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

“In the cache locality colour diagram, the colours
represent some sort of heuristic for locality, can you
explain what exactly is that heuristic for our locality
graph?”

• Take X/Y coordinates of vertex in uniform data grid

• Apply LOD partitioning to compute block ID / level

• Take block level, scale by some nice-looking value
and map to hue cycle.

• “Rainbow look” means:

– Vertices on same LOD level have spatial coherence in
vertex buffer.

– Grouping by LOD block ID is not apparent in this simple
colouring scheme.

30

Vertex coordinates

in uniform data grid

ColorFromHSV

(

hue: level * X,

sat: 1,

val: 1

)

QUESTIONS & ANSWERS – #2

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

“You mentioned that in DX12 for amplification/mesh
shaders the CPU was traversing the Sectors. What
sort of approach did you use to determine how much
the CPU must traverse the network? Is this done
automatically or manually by trial and error?”

1. CPU traverses the terrain mesh, as required by
culling, texturing, etc. This yields ~100..200
sectors, having roughly the same screen size and
roughly the same triangle count, assuming the
terrain surface “complexity” is similar.
=> automatic

2. CPU traverses N quadtree-levels deeper.
N too low: no parallel processing
N too high: CPU / bandwidth usage too high
=> trial and error, N=3 seems to be a good value

31

Whole mesh

One mesh sector

per render batch

Step #1

4^N input sectors per render batch

Step #2

QUESTIONS & ANSWERS – #3

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

“The encoding of a terminal triangle, Slide # 24 you
show that bits 0..1 means the ‘child index of C in V’
what exactly does this index mean?”

• Take vertex “2” in the figure as V

• Map LL to 0, LR to 1, RL to 2, RR to 3

• Then:
“6” is the LL-child of V, child index is 0
“10” is the LR-child of V, child index is 1
“12” is the RL-child of V, child index is 2
“16” is the RR-child of V, child index is 3

• The terminal triangle code also encodes the “X” bits
of the child links from “1” / “4” to V.

• Just a nomenclature:
LL, LR, RL, RR are “human-readable”
0, 1, 2, 3 are “machine-readable”

32

QUESTIONS & ANSWERS – #4

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

“Mesh shaders only work on a small group of
triangles. How is determined how much work is
needed to be done in the CPU to traverse the
hierarchy before a group of triangles can be
dispatched to be processed in a mesh shader?”

• Amplification Shaders take CPU-generated sectors
(see question #2) and expand them to terminal
triangle codes.
=> N=3 is no guarantee for “always good”
=> might overflow buffer in extreme cases
=> will result in missing terrain parts

• “Chicken-and-egg” style of problem: you know how
much work to do after having done the work.

• Mesh Shaders expand each terminal triangle code
to actual triangles.

• At most N triangles per terminal triangle (for a 9x9
grid, N = 10).

33

QUESTIONS & ANSWERS – #5

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

“Could he use compute shaders to spawn the mesh
shaders instead of using the CPU to do so. I mean, can
he use a hybrid Compute / Mesh shader combination
and if there is an advantage to do so?”

• Using Compute + Amplification + Mesh shaders is an
interesting idea.

• The CPU could output just the minimal pre-
triangulation (see question #2, ~100..200 sectors).

• Compute Shader could perform “pre-traversal”, in
order to determine a “correct” value for N.

• Amplification Shader could consume output of
Compute Shader, using the correct N for each sector.
- or –
Compute Shader outputs indirect mesh dispatch
commands, bypassing Amplification Shader.

• Sounds like “Best of Both Worlds”…

• Will definitely try to implement this approach ☺

34

QUESTIONS & ANSWERS – #6

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

“For example, when there is a tall mountain with steep
sides, how is the tessellation level determined to avoid
stretched triangles? Is the decision done using a view
dependent or measuring the area projected into the
screen, or is it by just using the vertex to camera
distance?”

• Both CPU mesh refinement and GPU tessellation are
based on projected screen size.

• CPU:
RTIN subdivision is triggered when projected triangle
areas exceed a given quality threshold.
– “Horizontal” or “real” triangles: area is used to apply

quality metric for textures, materials, normal

– “Vertical” or “virtual” triangles: area is used to measure the
geometric error that is introduced by a new vertex.

• GPU:
Tessellation amount is specified as maximum edge
length in screen-space (for maximum texture surface
“complexity”), tessellation factors are computed to get
the subdivision that gets as close as possible.

35

QUESTIONS & ANSWERS – #7

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

“When transitioning between levels of detail, the
triangulation is changing. The normal seems to be
fixed, is this right? At what level of the hierarchy it is
computed? When new triangles are introduced,
rendering artifacts might appear (e.g. a difference in
shading). How you minimize those artifacts? Are you
using some type of geo-morphing to smooth out the
transitions between levels and how it works with
different tessellations forms?”

• Normal are computed from the vertex
“neighbourhood”, must be updated when
triangulation changes.

• Compute “base” and “detail” normal per-vertex:
“base”: using neighbourhood with lowest detail
“detail”: using neighbourhood with highest detail

• Blend between “base” & “detail” in Vertex Shader

36

• Project area of “base” neighbourhood to screen-size.

• Project area of “detail” neighbourhood to screen-size.

• Compute blend factor for “base” and “detail” normal.

• Vertex Shader outputs smooth normal vectors; from there,
any kind of tessellation (HS/DS/GS) may take over.

MATTHIAS ENGLERT

FOUNDER

Fulda (Germany) - Tinman 3D - https://www.tinman3d.com/

Matthias Englert is a software enthusiast that grew up programming CGA,
EGA and VGA boards - being fascinated by the possibilities of real-time
computer graphics.

In 2012, Matthias created the Tinman3D SDK, a CPU-based 3D terrain-
pipeline and rendering-engine, which uses modern GPUs for visual output.

Being thrilled by the advent of NVidia's Turing architecture, Matthias is now
working on ways to integrate new GPU features into the SDK, for example
Mesh Shaders and Ray Tracing.

To reach out for Matthias, just write him an email: me@tinman3d.com

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D . 37

mailto:me@tinman3d.com

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D . 38

RECORDING POLICY
It is important to recognize that many of the words, images, sounds, objects, and

technologies presented at SIGGRAPH are protected by copyrights or patents. They are

owned by the people who created them. Please respect their intellectual-property rights

by refraining from making recordings from your device or taking screenshots. If you are

interested in the content, feel free to reach out to the contributor or visit the ACM

SIGGRAPH Digital library after the event, where the proceedings will be made available.

CREDITS
The images shown in this presentation have been generated with the Tinman 3D

software by processing 3rd party geodata: “ASTER Global Digital Elevation Map”

https://asterweb.jpl.nasa.gov/gdem.asp, “EGM96 - The NASA GSFC and NIMA Joint

Geopotential Model” https://cddis.nasa.gov/926/egm96/egm96.html, “Global Multi-

resolution Terrain Elevation Data 2010” http://topotools.cr.usgs.gov/gmted_viewer, “The

National Map - Elevation Layer” https://nationalmap.gov/elevation.html, “GoogleMaps”

https://maps.google.de, “BingMaps”, https://www.bing.com/maps, “Elevation1 DSM

Technical Information”, http://www.intelligence-airbusds.com/en/4367-elevation1

https://asterweb.jpl.nasa.gov/gdem.asp
https://cddis.nasa.gov/926/egm96/egm96.html
http://topotools.cr.usgs.gov/gmted_viewer
https://nationalmap.gov/elevation.html
https://maps.google.de/
https://www.bing.com/maps
http://www.intelligence-airbusds.com/en/4367-elevation1

