

REAL-TIME FUSION

Scale and merge (low res + high res) Combine data (base + detail) Adjust and augment (corrections)

VISUALIZATION

Consumer level hardware (CPU, GPU) Real-time, interactive 3D Seamless geometry + textures

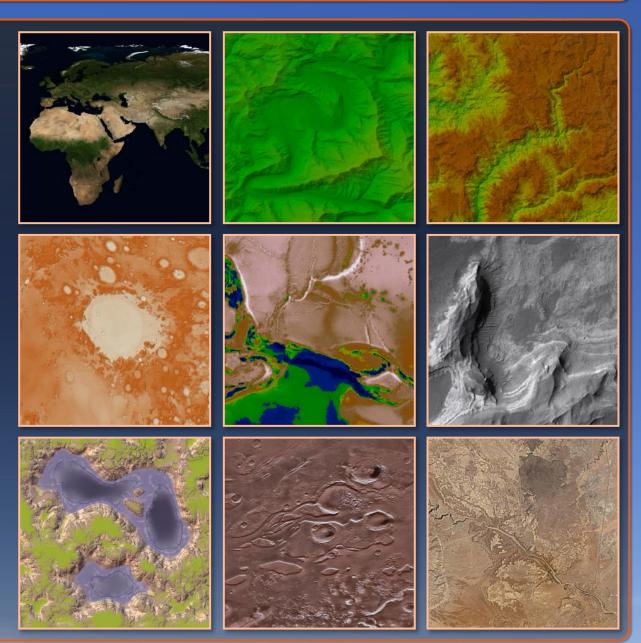
ANALYSIS

Visibility determination (e.g. culling) Collision detection (e.g. physics) Obstacle avoidance (e.g. SDF) Path finding / navigation

HIGH-PRECISION

: global data : local data ▶ 50 cm ▶ 0.25 mm : surface scans Digital Elevation Model (DSM, DTM) ▶ 300 m : GMTED2010 : ASTER GDEM 2, SRTMGL1 ▶ 30 m ▶ 1 m : Elevation1 - Airbus D&S Satellite Imagery: ► 500 m : BlueMarble2 ▶ 15 m : Landsat ▶ 50 cm : GeoEye, KOMPSAT, Pleiades, WorldView... Manual adjustments: ▶ 0.9 cm : Custom scenery / fixes Surface Scans: ▶ 0.25 mm : e.g. Quixel Megascans

REAL-TIME FUSION


Geo-referenced image files:

- ► GeoTIFF, JPEG2000+WKT...
- ► Datum (e.g. WGS84/EGM96)
- Projection
- (e.g. Mercator)
- ▶ Parameters (e.g. origin, scale)

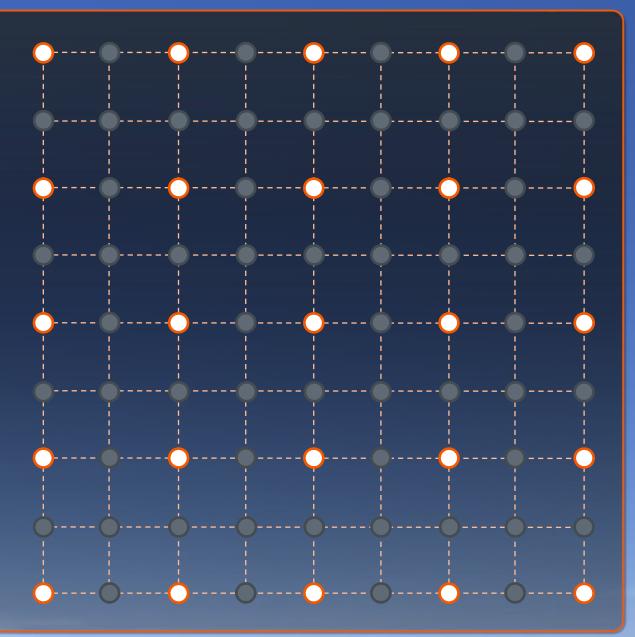
Myriad of possible combinations, huge amounts of data, cannot process in real-time!

Example: ASTER GDEM 2 http://asterweb.jpl.nasa.gov/gdem.asp Tiles á 3,601 x 3,601 pixels over 22,000 tiles more than 2.8E+11 pixels

Need uniform basis for geodata, to enable real-time processing!

REAL-TIME FUSION

Uniform base grid:


- ► Square
- ► Pixel-is-point:

► Pixel-is-area:

- ◯ 2^n+1 └_; 2^n
- ▶ Uniform datum: e.g. WGS84
- ▶ Sparse, i.e. per-pixel coverage
- Easy to scale (power of two)
- Easy to merge / combine

Need to resample geodata to grid, must be done in pre-processing step, using a GIS processing tool.

ArcGIS https://www.arcgis.com/features/index.html GDAL http://www.gdal.org/ Tinman 3D https://www.tinman3d.com/

REAL-TIME FUSION

Uniform base grid:

- ► Need to choose a map projection,
- ...that works equally well
- ...everywhere on surface of Earth.

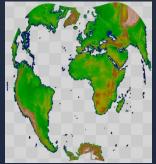
To be used as a storage format:

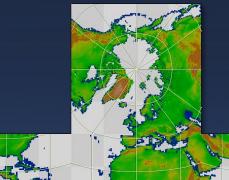
- Lengths / angles are less important,
- ...heavy resampling at runtime.
- Areas must be preserved (almost),
- ...for high-quality sampling.

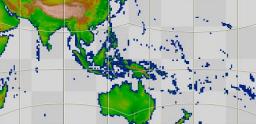
Use 6 base grids instead of one, assemble as cubemap:

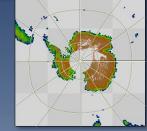
- ▶ Per-face projection (e.g. Gnomonic)
- Custom warp to improve GSD,
- ...for example:

$$\sqrt{2x^2 + 0.5} * x, -1 \le x \le +1$$


Works well for real-time processing.






Cassini?



REAL-TIME FUSION

Example uniform base grid:

- ▶ Grid size: 16 x 16
- ► Block size: 4 x 4

Data management:

- Per-block storage
- ► Lossless compression
- ► Random access

Block #0 on level #0 Block #1 on level #1 Block #2 on level #1 Block #3 on level #1 Block #4 on level #2

Block #15 on Level #3
 Actual uniform base grid: 2^30+1
 1,073,741,825 x 1,073,741,825

▶ Block size: 256 x 256

REAL-TIME FUSION

GMTED2010

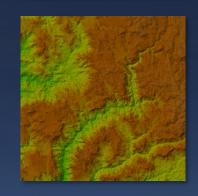
► Whole dataset

- ▶ GSD : 274 m
- ► File size : 1.84 GB

ASTER GDEM 2

Landsat 7

► GSD


- ► Whole dataset
- ▶ GSD : 34 m
 ▶ File size : 116 GB

► 2 selected scenes

► File size : 54<u>1MB</u>

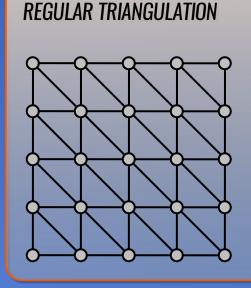
:17 m

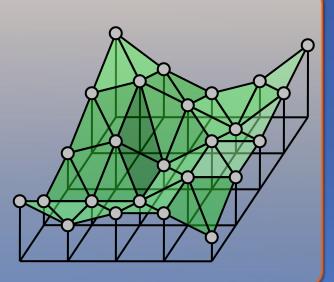
http://manual.tinman3d.com/Geodata_Examples.html

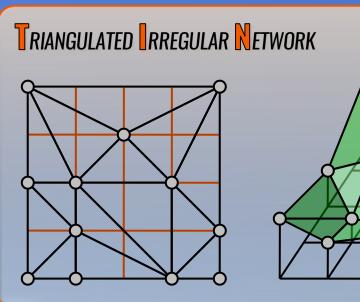
NED 1/3"

- ► Whole dataset
- ► GSD : 8.5 m
- ► File size : 31.8 GB

BlueMarble 2 Whole dataset GSD : 548 m File size : 908 MB





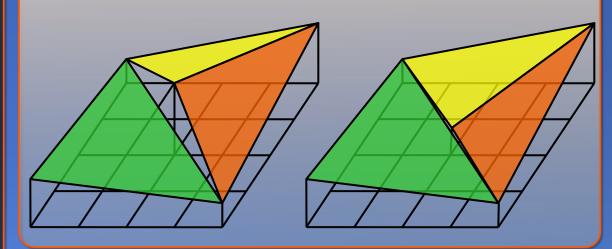

- A recipe for real-time 3D terrain:
- #1: Uniform base grid
- Simplifies scaling & merging
- Virtual storage, sparse data
- LOD-based partitioning
- #2 : Continuous level-of-detail
- Choose relevant grid points
- Compute optimal triangulation
- **#3** : Incremental GPU streaming
- **>** Exploit frame-to-frame coherence
- ▶ Only upload new data to GPU
- ▶ Reuse geometry batches (IB + VB)

Well-known recipe, but hard to cook: Stateless, One-pass Adaptive Refinement (2002) https://computation.llnl.gov/casc/SOAR/

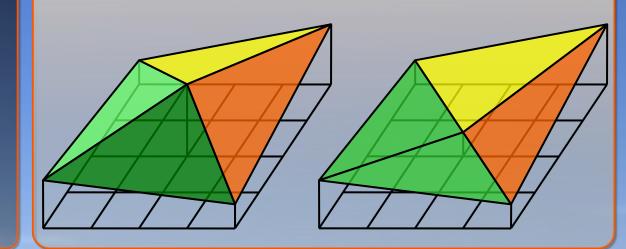
Real-time Optimally Adapting Meshes (1997) http://www.cognigraph.com/ROAM_homepage/

GPU's are heavily optimized for geometric processing.

- ► Vertices
- ► Triangles
- ► Textures


Must be generate efficiently from geodata, according to current view.

- Visibility / LOD computation
- ▶ Generate terrain geometry
- ► Geodata streaming to GPU


Difficult to achieve in real-time!

- ▶ Pre-process terrain data
- Tolerate blurry textures
- Tolerate inaccurate meshes
- > Tolerate defective meshes

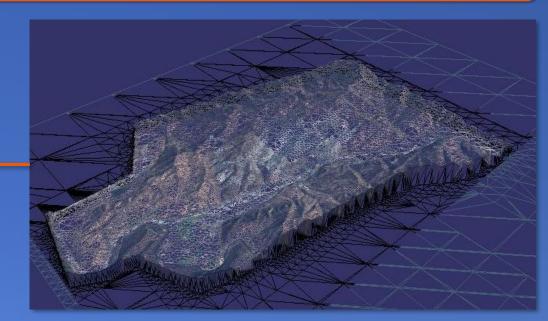
DEFECTIVE TERRAIN MESH – GAPS AND T-JUNCTIONS

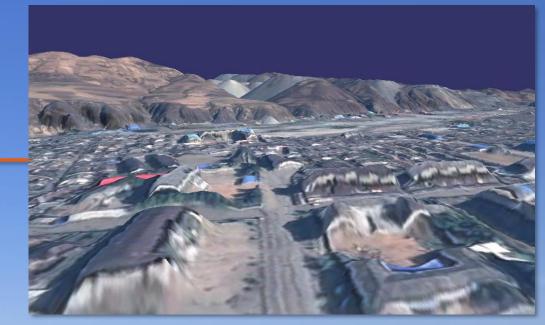
VALID TERRAIN MESH - CLOSED SURFACE EVERYWHERE

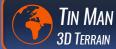
5.5
5.5
) 3x2
D Ox3
23

VISUALIZATION

Pre-processing yields optimal results for selected region of interest:


- ► Valid terrain mesh
- Optimal triangle count
- ► High-quality textures


Generated terrain is static:


- ► Cannot edit after creation
- Difficult to merge / adjust

Trian3DBuilder http://www.triangraphics.de/

Elevation1 by Airbus Defence & Space http://www.geo-airbusds.com/

VISUALIZATION

Performance vs. texture quality:

- ► Texture seams
- Blurry textures

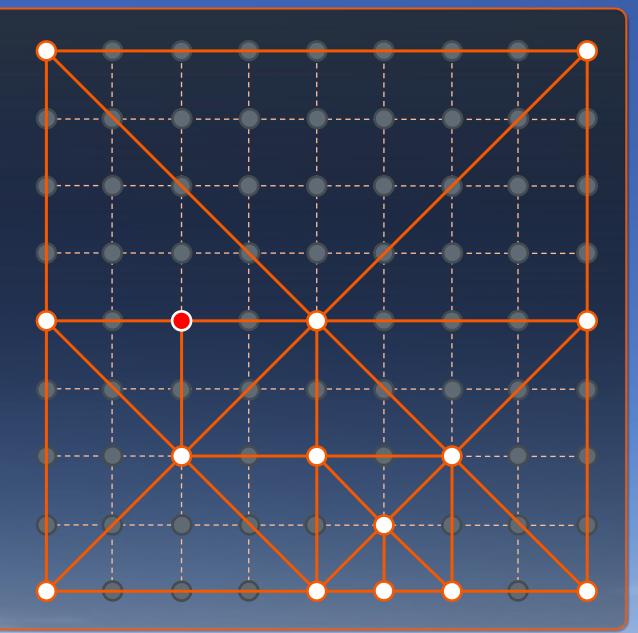
Performance vs. vertices / triangles:

- Inaccurate geometry
- ► Fake geometry
- Low quality geometry Challenging to implement a generalpurpose 3D terrain solution!

https://www.google.com/intl/de/earth/ http://www.esri.com/software/arcgis/explorer/

Continuous level-of-detail (CLOD):

- ▶ Based on uniform grid
- Grid points \rightarrow vertices
- Grid cells \rightarrow textures []]
- \blacktriangleright Right isosceles triangles \rightarrow RTIN
- \blacktriangleright Start with 2 triangles \rightarrow root sector


- ▶ Split triangles at longest edge
- Fix T-junctions \rightarrow forced split
- Load new grid points only
- ► Merge leaf triangles

Split & merge anywhere, any time:

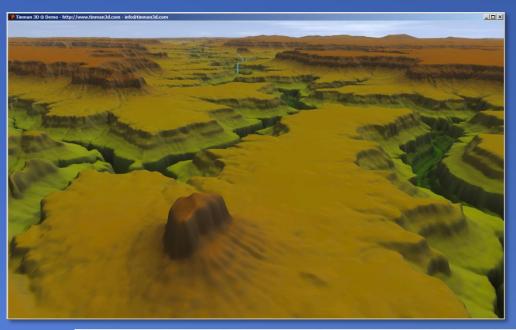
- > Dynamic and adaptive mesh
- > Terrain mesh is always valid

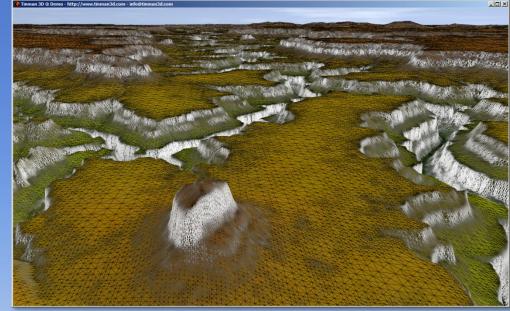
Uniform cubemap grid, size 2^30+1:

- ► Global coverage
- ▶ ~9 mm GSD for Earth

VISUALIZATION

Continuous level-of-detail (CLOD):

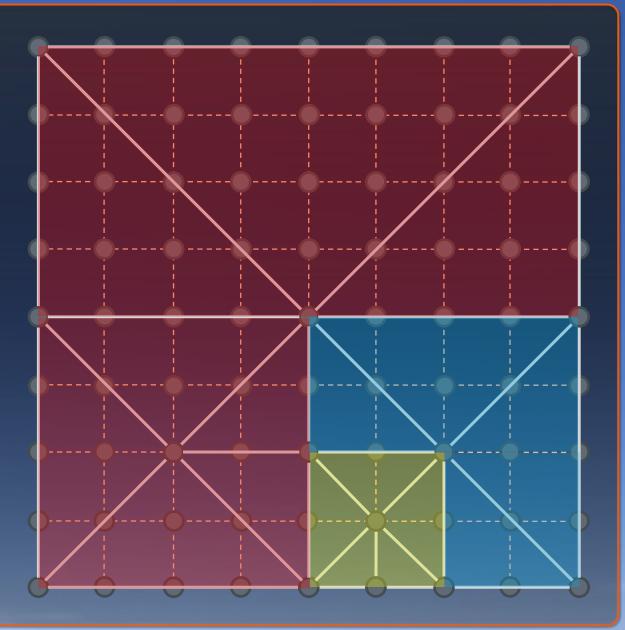

- ▶ Based on uniform grid
- $\blacktriangleright \ Grid \ points \quad \rightarrow \ vertices$
- $\blacktriangleright \ \text{Grid cells} \qquad \rightarrow \text{textures}$
- \blacktriangleright Right isosceles triangles \rightarrow RTIN
- \blacktriangleright Start with 2 triangles \rightarrow root sector
- ▶ Split triangles at longest edge
- \blacktriangleright Fix T-junctions \rightarrow forced split
- Load new grid points only
- Merge leaf triangles


Split & merge anywhere, any time:

- > Dynamic and adaptive mesh
- > Terrain mesh is always valid

Uniform cubemap grid, size 2^30+1:

- ► Global coverage
- ▶ ~9 mm GSD for Earth



- Spatial quad-tree data structure:
- ▶ Root sector spans whole grid
- Split recursively \rightarrow 4 sub-sectors
- ▶ Can be inferred from CLOD,
- ... no extra work necessary!

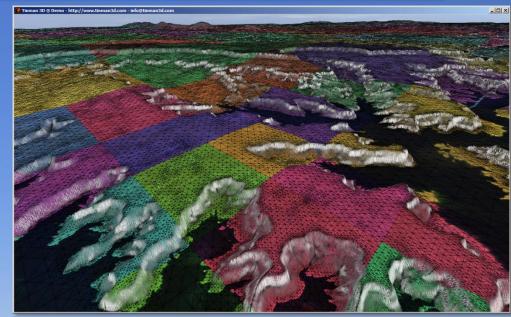
Attach textures to sectors:

- ▶ e.g. 256 x 256 texture per-sector,
- ... as done by GoogleMaps et al.
- ▶ to avoid texture seams,
- ... add blend weights to vertices:
 - f : blend factor child \rightarrow parent
 - u, v : texture coordinates [0..1]
 - B_0, B_1 : precomputed coefficient vectors
 - x : distance to point of view

$$f = \begin{pmatrix} 1 \\ u \\ v \\ u * v \end{pmatrix} * \left(\overline{B_0} * \frac{1}{x} + \overline{B_1} \right)$$

VISUALIZATION

Spatial quad-tree data structure:


- Root sector spans whole grid
- Split recursively \rightarrow 4 sub-sectors
- ► Can be inferred from CLOD,
- ... no extra work necessary!

Attach textures to sectors:

- ▶ e.g. 256 x 256 texture per-sector,
- ... as done by GoogleMaps et al.
- ▶ to avoid texture seams,
- ... add blend weights to vertices:
- $\begin{array}{ll} f & : \mbox{blend factor child} \rightarrow \mbox{parent} \\ u, v & : \mbox{texture coordinates [0..1]} \\ B_0, B_1 & : \mbox{precomputed coefficient vectors} \\ x & : \mbox{distance to point of view} \end{array}$

$$f = \begin{pmatrix} 1 \\ u \\ v \\ u * v \end{pmatrix} * \left(\overline{B_0} * \frac{1}{x} + \overline{B_1}\right)$$

VISUALIZATION

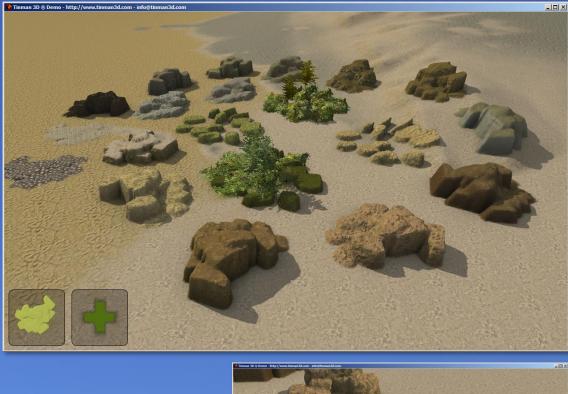
Augment with artificial detail:

- ▶ We have a smooth CLOD mesh,
- ... based on accurate geodata
- ... and / or authored content.
- ► Add per-vertex material weights,
- ... to enhance visual output.

Augmented surface materials: https://megascans.se/

- Obtained from real-world scans
- ... at very high resolution: < 1 mm.
- Using standard PBR workflow
- ... albedo / ambient occlusion
- ▶ ... reflectivity / gloss
- ▶ ... normal / displacement

Can be used to dramatically increase the perceived resolution of geodata.


VISUALIZATION

- Dynamic editing at runtime:
- ▶ We have a global uniform grid,
- ▶ ... at 9 mm GSD.
- ▶ Can add data anywhere,
- ... with arbitrary resolution.
- ▶ The CLOD mesh will adapt,
- ... so will the spatial quad-tree.

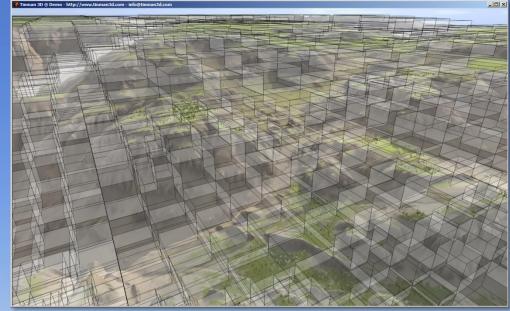
Real-time editing workflow:

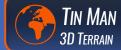
- Modify grids directly,
- ... or use separate grid for deltas.
- ▶ Correct bad data, e.g. spikes.
- > Adjust inaccurate data, e.g. roads.
- ▶ Author custom scenery.
- ► WYSIWYG

Can provide editing facilities, without compromise or restrictions!

ANALYSIS


Need a spatial data structure, to perform queries efficiently:


- ► Collision test
- ► Visibility test
- ► Intersection test
- ► Signed distance field
- Nested data


CLOD mesh already has quad-tree:

- ► Attach per-vertex bounding spheres
- ► Attach per-vertex AABB's
- > Add nested data to quad-tree,
- ▶ ... bounding sphere radii
- ... min / max elevation
- ... material mask

Augmented quad-tree can be used for many kinds of spatial queries!

Thank you!

Matthias Englert - me@tinman3d.com

AABB	- Axis Aligned Bounding Box
ASTER GDEM 2	- Advanced Spaceborne Thermal Emission and Reflection
	Radiometer Global Digital Elevation Model
CLOD	- Continuous Level Of Detail
CPU	- Central Processing Unit
CRS	- Coordinate Reference System
DSM, DTM	- Digital Surface Model, Digital Terrain Model
GDAL	- Geospatial Data Abstraction Library
GMTED 2010	- Global Multi-resolution Terrain Elevation Data 2010
GPU	- Graphics Processing Unit
GSD	- Ground Sample Distance
IB, VB	- Index Buffer, Vertex Buffer
LOD	- Level Of Detail
NED	- National Elevation Dataset
PBR	- Physically Based Rendering
ROAM	- Real-time Optimally Adapting Meshes
SDF	- Signed Distance Field
SOAR	- Stateless, One-pass Adaptive Refinement
SRTMGL1	- Shuttle Radar Topography Mission Global DEM 1"
TIN, RTIN	- (Right) Triangulated Irregular Network
WGS84, EGM96	- World Geodetic System, Earth Gravitational Model
WKT	- Well Known Text
WYSIWYG	- What You See Is What You Get

Demo & Questions

